在硅烷偶联剂分子中,既存在对材料亲水的有机基团又对无机材料亲水的可水解基团。其中,有机基团对橡胶产品的性能影响很大。只有当有机基团可以与相应的有机材料反应时,才可以改善橡胶材料的性能。当生产乙烯基三氯硅烷中的有机基团为非反应性烷基或芳基时,它对极性有机材料没有影响,但是可以用于非极性材料中。当选择的生产乙烯基三氯硅烷作为橡胶材料的辅助剂,除了在硅烷偶联剂的有机基团的反应性,与有机材料的硅烷偶联剂和橡胶材料的存储装置的兼容性,也应考虑。影响稳定。有时,尽量使用复合硅烷偶联剂或硅烷偶联剂与多种化合物的反应产物。
生产乙烯基三氯硅烷具有将材料泵送到反应液体上的思想,这不仅有效地解决了由于反应器每单位体积的热交换面积太小而导致的温度延迟的问题,而且由于抽气装置的设计,可以避免反应液底部泄漏引起的安全隐患;应用外部热交换器冷却外部循环内部温度的技术方案,其产生的明显有益效果包括以下三个方面:1.对外回路进行内部冷却,可使反应液温度迅速降至目标温度,使放热反应可控;2.反应液从顶部抽出的设计可以避免反应器底部泄漏引起的潜在安全隐患;3.生产乙烯基三氯硅烷由于缩短了进料时间和反应时间,对提高生产效率更有利。
硅烷偶联剂的主要应用领域之一是对有机聚合物中使用的无机填料的处理。后者可以用生产乙烯基三氯硅烷处理,将其亲水性表面转变为亲有机表面,这可以防止颗粒聚集和系统中急剧的聚合物增稠,还可以改善有机聚合物对增强填料的润湿性。碳官能硅烷还可以使补强填料与聚合物牢固结合。但是,硅烷偶联剂的效果还与生产乙烯基三氯硅烷的种类和量,基材的特性,树脂或聚合物的性质以及应用场合,方法和条件有关。
加工对象的单位比表面积的反应点数和生产乙烯基三氯硅烷覆盖的表面厚度是决定基材表面硅化所需偶联剂数量的关键因素。为了获得单分子层的覆盖率,首先需要确定衬底的SiOH含量。众所周知,大多数硅质基材的SiOH含量为4-12 / m2,因此,如果均匀分布,则1摩尔的生产乙烯基三氯硅烷可以覆盖约7500m2的基材。对于具有多个可水解基团的硅烷偶联剂,由于自缩合反应的缘故,计算精度会受到一定程度的影响。如果使用Y3SiX处理基板,则可以获得与计算值一致的单层覆盖率。但是,由于Y 3 SiX价格昂贵并且覆盖物的耐水解性差,因此没有实用价值。另外,基板表面上的Si-OH的数量也随加热条件而变化。如果用碱性清洁剂处理基材表面,则会形成硅烷醇阴离子。
硅烷偶联剂是一种硅烷,在分子中包含两个不同的化学性质(有机官能团和可水解基团)。分子结构通常为:YR-Si(Men)X4-n-1(其中Y为有机官能团,R为可水解的硅官能团)。通过使用生产乙烯基三氯硅烷可以在无机物和有机物之间的界面之间建立“分子桥”,以将性质非常不同的两种材料连接在一起,从而形成有机基体-硅烷偶联剂-无机基体的粘结层。改善复合材料的性能并增加粘结强度。典型的生产乙烯基三氯硅烷包括A151(乙烯基三乙氧基硅烷),A171(乙烯基三甲氧基硅烷),A172(乙烯基三(β-甲氧基乙氧基)硅烷)等。