早在1940年代,约翰·霍普金斯大学的Ralph K Witt等人在向海军军械局提交的“秘密”报告中指出,玻璃纤维已用烯丙基三乙氧基硅烷处理过。所得的不饱和聚合物复合材料的强度是用乙基三氯硅烷处理的玻璃纤维的强度的两倍,从而打开了生产丙基三乙氧基硅烷的实际应用历史,很大地刺激了硅烷偶联剂的研究和开发。硅烷的应用:硅烷偶联剂作为连接两种性质不同的材料的“分子桥”,已广泛用于复合材料,涂料,胶粘剂和其他行业。随着其在玻璃纤维增强材料中的应用,合成的种类正在增加,并且应用范围也在扩大。现在,生产丙基三乙氧基硅烷基本上可用于所有无机材料和有机材料的连接表面,并已广泛用于汽车,航空,电子和建筑等行业。
随着精细化学品的难以替代和应用范围的不断扩大,精细化工行业的快速发展已成为一种工业发展趋势。国际生产丙基三乙氧基硅烷的发展特点主要体现在:(1)产品快速更新,并不断推出新产品以开发特殊和高端产品。多个品种和系列化是精细化学品的重要标志。(2)高新技术含量的精细化学品是技术密集型和综合性产业,有必要整合不同学科和行业的先进技术来开发新产品。(3)精细化工服务于高科技服务。生产丙基三乙氧基硅烷品服务于功能高分子材料,生物工程,电子信息,环保能源和其他服务。这些高科技服务紧密相关,相互渗透。
1、极性;生产丙基三乙氧基硅烷和被粘物分子的极性会影响键合强度。2、分子量;聚合物的分子量(或聚合度)直接影响聚合物分子之间的作用力。3、侧链;长链分子上的侧基是决定聚合物性能的重要因素。4、PH值;对于某些粘合剂,PH值与粘合剂的适用期密切相关,这会影响粘合强度和粘合寿命。5、交联;聚合物的内聚强度随着交联密度的增加而增加,并且当交联密度太高时,聚合物变得硬而脆,从而降低了聚合物的冲击强度。6、溶剂和增塑剂;生产丙基三乙氧基硅烷的粘合强度当然受粘合剂层中残留溶剂的量影响。7、包装;8、结晶度;具有高结晶度的聚合物分子的缩聚状态是规则的。9、分解;在使用过程中,粘合剂的分解是降低粘合强度的重要因素。
1、有机硅灌封胶的粘结性能比普通灌封胶强,特别是用于电气电子线路板或电子元件时,粘结强度更加明显。可以满足电器的耐冲击和抗撞击的需求。2、生产丙基三乙氧基硅烷在固化过程中收缩率小,无法与普通灌封胶相比。同时,固化后具有良好的防水,防潮和抗老化性能。3、有机硅灌封胶可以在室温下固化或加热,以满足用户对施工时间的要求。在室温固化过程中,自消泡效果更好,操作更方便。4、固化后,生产丙基三乙氧基硅烷具有良好的耐热性。即使在季节变化中,它也可以保持良好的粘接强度和良好的绝缘性能,以确保电器的安全。5、有机硅灌封胶在施工过程中具有良好的流动性,可以倒入缝隙中,完全可以满足电器的灌封要求,灌封效果理想。
(1)硅烷偶联剂的改性;利用生产丙基三乙氧基硅烷的双重反应功能,有机基团的一端与白炭黑表面的羟基反应,另一端与橡胶等高分子大分子链反应。(2)醇酯法改性;在白色炭黑的表面上,脂肪醇与生产丙基三乙氧基硅烷反应以除去水分子,并且硅烷醇基被烷氧基取代。(3)聚合物接枝改性;聚合物接枝改性是指在一定条件下通过化学反应将聚合物接枝到白炭黑的表面。(4)聚合物涂层改性;涂层改性是一种常用的表面改性技术,即用不同化学组成的涂层覆盖二氧化硅表面,从而减少羟基之间的相互作用,降低表面能并改善分散性。(5)其他修改方法;除上述表面改性方法外,还可以通过乳液聚合,无机表面涂层改性和超声改性来改性二氧化硅。